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Abstract

We compare the lattice Boltzmann equation (LBE) and the gas-kinetic scheme (GKS) applied to 2D incompressible
laminar flows. Although both methods are derived from the Boltzmann equation thus share a common kinetic origin,
numerically they are rather different. The LBE is a finite difference method, while the GKS is a finite-volume one. In addi-
tion, the LBE is valid for near incompressible flows with low-Mach number restriction Ma < 0.3, while the GKS is valid
for fully compressible flows. In this study, we use the generalized lattice Boltzmann equation (GLBE) with multiple-relax-
ation-time (MRT) collision model, which overcomes all the apparent defects in the popular lattice BGK equation. We use
both the LBE and GKS methods to simulate the flow past a square block symmetrically placed in a 2D channel with the
Reynolds number Re between 10 and 300. The LBE and GKS results are validated against the well-resolved results
obtained using finite-volume method. Our results show that both the LBE and GKS yield quantitatively similar results
for laminar flow simulations, and agree well with existing ones, provided that sufficient grid resolution is given. For 2D
problems, the LBE is about 10 and 3 times faster than the GKS for steady and unsteady flow calculations, respectively,
while the GKS uses less memory. We also observe that the GKS method is much more robust and stable for under-
resolved cases due to its upwinding nature and interpolations used in calculating fluxes.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In general, kinetic methods for computational fluid dynamics (CFD) are derived from the Boltzmann
equation, as opposed to conventional CFD methods based on direct discretizations of the Navier–Stokes
equations. Two distinctive features of kinetic methods immediately appear. First, kinetic methods can include
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extended hydrodynamics beyond the validity regime of the Navier–Stokes equations, because they are based
on kinetic theory. It is known that the Boltzmann equation provides the theoretical connection between
hydrodynamics and the underlying microscopic physics. Kinetic methods are often called mesoscopic methods
for they act between the macroscopic conservation laws and their corresponding microscopic dynamics. And
second, the Boltzmann equation is a first-order integro-partial-differential equation with a linear advection
term, while the Navier–Stokes equation is a second-order partial-differential equation with a nonlinear advec-
tion term. The nonlinearity in the Boltzmann equation resides in its collision term, which is local. This feature
may lead to some computational advantages [1]. For these reasons, kinetic methods have attracted some inter-
est recently. Due to their mesoscopic nature, kinetic methods are particularly appealing in modeling and sim-
ulations of complex fluids (cf. [2] and references therein).

There are a number of kinetic or mesoscopic methods, such as the lattice gas cellular automata (LGCA),
the lattice Boltzmann equation (LBE), the gas-kinetic schemes (GKS), the smoothed particle hydrodynamics
(SPH), and the dissipative particle dynamics (DPD). Among these methods, the LBE and GKS methods are
specifically designed as numerical methods for CFD: the former is only valid for near incompressible flows
while the latter is for fully compressible flows. Both methods have been applied to simulate viscous flows
[3,4], heat transfer problems [5,6], shallow water equations [7], multiphase [8–11] and multi-component [12–
17] flows, magnetohydrodynamics [18–20], and microflows [21–24]. Besides their common connections to
the Boltzmann equation, the LBE and GKS methods are quite different in many ways. First of all, the
LBE is a finite difference (FD) method while the GKS is a finite-volume (FV) one. Second, the LBE is a system
evolving on the discrete phase space C� :¼ ðdxZd ; fcigÞ and in discrete time tn 2 dtN0 :¼ dtf0; 1; 2; . . .g, where
dxZd is a d-dimension lattice space with a lattice spacing dx, fciji ¼ 0; 1; 2; . . . ;Ng is a finite discrete velocity
set, and dt is the time step size. In the LBE, the phase space C :¼ ðx; nÞ and time t are discretized in such way
that for any lattice point xj 2 dxZd , xj þ cidt 2 dxZd for all ci 2 fcig. In contrast, the particle velocity space n

remains continuous in the GKS, and the space x and time t are discretized independently. However, the grid
spacing Dx and time step size Dt in the GKS must satisfy certain stability criteria. Finally and most impor-
tantly, in the LBE, the Maxwellian equilibrium distribution function is approximated by its low-order Taylor
expansion about zero flow velocity. This approximation limits the LBE method to near incompressible flows
with low-Mach number restriction Ma < 0.3. The GKS method uses the Maxwellian equilibrium distribution
function without any approximation, and it is valid for fully compressible flows.

A comparison between the GKS and LBE methods has been made previously [25]. However, the previous
study [25] has a very limited scope. First, the GKS was compared with the lattice Bhatnagar–Gross–Krook
[26] (BGK) equation or LBGK model [27,28], which has some severe defects leading to numerical instability
and inaccurate boundary conditions [29,30]. Second, the previous study is limited to steady internal flow (the
2D lid-driven cavity flow). And third, only the numerical accuracy of both methods are compared in the pre-
vious study, but the numerical stability and computational efficiency of these two methods were not
investigated.

The present work is motivated to provide a more thorough comparative study of the LBE and GKS meth-
ods for simulations of near incompressible flows. The present work differs from the previous study in several
aspects. First of all, instead of the popular LBGK equation [27,28], we shall use the generalized lattice Boltz-
mann equation (GLBE) with multiple-relaxation-time (MRT) collision model [31]. The GLBE or MRT-LBE
can overcome all the apparent defects in the LBGK equation. Second, test case used in this work is an open
flow involving boundary conditions different from the ones in internal flows. Finally, we will investigate in
detail the numerical accuracy, stability and efficiency of both the LBE and GKS methods for low-Mach num-
ber laminar flows. We will also validate both the LBE and GKS methods by comparing our results with the
existing ones obtained by other well-established methods.

The remaining part of this paper is organized as follows. We provide first a succinct discussion on kinetic
theory, especially on the linearized Boltzmann equation, and then the formulations of the GKS and LBE
methods in Section 2. We discuss the test flow problem in detail in Section 3. The test case we choose is
the 2D flow past a square block symmetrically placed in a channel [32]. We discuss two methods to evaluate
hydrodynamic forces: the pressure-tensor integration method and the momentum-exchange method, used in
the GKS and LBE simulations, respectively. We report the numerical results with the Reynolds number Re

between 10 and 300 in Section 4, which include both steady and unsteady flows. We compare velocity fields,
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the wake length behind the square, and the drag and lift coefficients obtained by the GKS and LBE methods.
Our results are validated by the results obtained by a well resolved FV simulation [32]. Finally, we conclude
the paper with a summary in Section 5.

2. The numerical methods: GKS and LBE

2.1. The linearized Boltzmann equation

The Boltzmann equation is the evolution equation for the single particle velocity distribution function f in
phase space C :¼ ðx; nÞ:
Dtf ¼ Xðf ; f Þ; Dt :¼ ot þ n � r; X :¼
Z

dn2 d�dhBðh; V Þ½f 01f 02 � f1f2�; ð1Þ
where V :¼ kn1 � n2k, and X is the collision operator satisfying the following local conservation laws:
Z
/aXðf ; f Þdn ¼ 0; /a 2 f1; n; n2=2g; ð2Þ
/a’s are the summational invariants for monatomic gases. Detailed description of the Boltzmann equation can
be found in standard textbooks on kinetic theory (e.g. [33,34]).

When the system is at equilibrium, i.e. f ¼ f ð0Þ, the collision term vanishes, and the equilibrium f ð0Þ is a
local Maxwellian depending on the (macroscopic) hydrodynamic variables, the density q, flow velocity u,
and temperature T, as follows:
f ð0Þðn; q; u; T Þ ¼ q

ð2pRT Þd=2
exp �ðn� uÞ2

2RT

" #
; ð3Þ
where d is the spatial dimension, and R is the gas constant. The hydrodynamic variables are also the (con-
served) moments of f and its equilibrium f ð0Þ:
q ¼
Z

f dn ¼
Z

f ð0Þ dn; ð4aÞ

qu ¼
Z

nf dn ¼
Z

nf ð0Þ dn; ð4bÞ

qe ¼ 1

2
qðdRT þ u � uÞ ¼ 1

2

Z
n � nf dn ¼ 1

2

Z
n � nf ð0Þ dn; ð4cÞ
where e is the specific total energy for monatomic gases.
Because of the insensitivity of hydrodynamics to the details of the underlying microscopic physics and for

the sake of computational efficiency, we only use the linearized Boltzmann equation to derive kinetic schemes:
Dtf ¼ f ð0ÞLðgÞ; LðgÞ :¼
Z

dn2 d�dhBðh; V Þf ð0Þ2 ½g01 þ g02 � g1 � g2�; ð5Þ
where f ¼ f ð0Þð1þ gÞ. For Maxwell molecules, Bðh; V Þ ¼ BðhÞ, then the eigenfunctions fwig of the linearized
collision operator L are Sonine polynomials in polar coordinates [33,34], or generalized Hermite polynomials
in Cartesian coordinates [35,34], with constant eigenvalues fxig. The function g (and f) may be expanded in
the complete eigenfunction set fwig, therefore:
g ¼
X1
i¼0

aiwi; LðgÞ ¼
X1
i¼1

aixiwi: ð6Þ
Based on the Gross–Jackson procedure [36,34], which mutilates the spectrum of L by representing all eigen-
values xi for i P N by the single value xN , a host of models can be constructed as follows:
LN ðgÞ ¼
XN�1

i¼1

aixi/i � xN

X1
i¼N

aiwi ¼
XN�1

i¼1

aiðxi þ xNÞwi � xN g: ð7Þ
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Therefore, the linearized Boltzmann equation is modeled by the following equation with ðN � 5Þ parameters:
Dtf ¼ f ð0Þ
XN�1

i¼1

aiðxi þ xN Þwi � xN ½f � f ð0Þ�: ð8Þ
Because ai ¼ 0 for i = 1–4, corresponding to the collisional invariants, hence the choice of N ¼ 5 and
xN ¼ 1=k lead to the Bhatnagar–Gross–Krook (BGK) model [34]:
Dtf ¼ �
1

k
½f � f ð0Þ�; ð9Þ
where the relaxation-time k is the sole parameter determining the transport coefficients for the model as
follows:
l ¼ qm ¼ kqRT ; ð10aÞ

j ¼ d þ 2

2
kqR2T ¼ cpl; ð10bÞ
where l and m are the dynamic and kinematic viscosities, respectively, j is the thermal conductivity, and
cp ¼ Rðd þ 2Þ=2 is the heat capacity at constant pressure. Obviously, the Prandtl number Pr :¼ cpl=j ¼ 1
for the BGK model, and this is a notable deficiency, which can be overcome by introducing one more relax-
ation parameter into the model.

The BGK model equation (9) admits the following formal solution:
f ðx; n; tÞ ¼ e�ðt�t0Þ=kf ðx0; n; t0Þ þ
1

k

Z t

t0

½f ð0Þðx0; n; t0Þe�ðt�t0Þ=k�dt0; ð11Þ
where x0 ¼ x� ðt � t0Þn and x0 ¼ x� ðt � t0Þn. It has been recognized that both the lattice BGK model and
the gas-kinetic scheme (GKS) are constructed from the above formal solution of the BGK equation
[37,38]. The LBE is a finite-difference approximation of the incompressible Navier–Stokes equations [39],
while the GKS is a finite-volume approximation of the fully compressible Navier–Stokes equations. In
LBE, the continuous velocity space n is approximated by a small set of discrete velocities fcig and the Max-
wellian distribution function f ð0Þ is approximated by its second-order Taylor expansion in terms of the flow
velocity u about u ¼ 0 [37,38]. Neither of these approximations are used in the GKS. In the GKS, the first-
order nonequilibrium distribution is computed by f ð1Þ ¼ �kDtf ð0Þ. The fluxes are computed by interpolations
from the cell centers to cell boundaries.

2.2. Gas-kinetic scheme

The gas-kinetic scheme (GKS) is a finite-volume (FV) scheme based on the BGK equation (9). The hydro-
dynamic equations can be written in terms of the conserved variables fUag and the corresponding fluxes fJag:
otUa þr � Ja ¼ 0; ð12aÞ

Ua ¼
Z

/af dn 2 fq; qu; qeg; Ja ¼
Z

n/af dn; ð12bÞ
where /a 2 f1; n; n2=2g are the collisional invariants. To formulate an FV scheme, Eq. (12a) is integrated over
a cell of volume V i and boundary oV i:
ot

Z
V i

Ua dV þ
Z

oV i

n̂ � Ja ds ¼ 0; ð13Þ
where n̂ is the unit out-normal vector of the cell surface. The time averaging of Eq. (13) over one time step
leads to:
Unþ1
a � Un

a þ
1

V i

Z tnþ1

tn

dt
Z

oV i

ds n̂ � Ja ¼ 0; ð14Þ
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where Un
a :¼ UaðtnÞ and Ua denotes the volume average of Ua:
Ua :¼ 1

V i

Z
V i

Ua dV :
The key feature that distinguished the GKS from all other FV schemes based on direct discretizations of the
Navier–Stokes equations lies in the construction of the fluxes at cell interfaces. In the GKS, the fluxes are eval-
uated from the distribution function f based on Eq. (11), as opposed to various numerical differentiation tech-
niques. For smooth flows without shocks, f can be approximated at the cell interface xiþ1=2, as depicted in
Fig. 1, as the following [25]:
f ðxiþ1=2; n; tÞ ¼ ½1þ ðt � tnÞot�f ðxiþ1=2; n; tnÞ � ½ð1� kDtÞ þ ðt � tnÞot�f ð0Þðxiþ1=2; n; tnÞ
¼ ½1� kðAþ n � aÞ þ ðt � tnÞA�f ð0Þðxiþ1=2; n; tnÞ; ð15Þ
where a ¼ r ln f ð0Þ and A ¼ ot ln f ð0Þ in 3D can be explicitly given:
a ¼ r ln qþ c2

2RT
� 3

2

� �
r ln T þ 1

RT
carua; ð16aÞ

A ¼ �n � aþ c2

2RT
� 5

2

� �
c � r ln T þ 1

RT
cc� 1

3
c2I

� �
: ru; ð16bÞ
where the convention for summation over the repeated indexes is used and I is the 3� 3 identity matrix. In Eq.
(15), two approximations have been applied. First, f is approximated by its second-order Chapman–Enskog
expansion in the context of the BGK equation, i.e. f � ð1� kDtÞf ð0Þ. And second approximation is that
otf � otf ð0Þ, which is consistent with the second-order Chapman–Enskog expansion and includes only the
first-order derivatives of the hydrodynamic variables q, u and T. To obtain Eqs. (16) for a and A, the Euler
equations must be used to substitute the time derivatives of q, u and T by their spatial gradients.

To compute f at the cell boundary xiþ1=2, one needs f ð0Þ and its derivatives at xiþ1=2, which in turn are given
by the hydrodynamic variables and their derivatives at xiþ1=2. The hydrodynamic variables and their deriva-
tives at xiþ1=2 are obtained by interpolations of their averaged values at cell centers fxig about the cell bound-
ary xiþ1=2. Consequently, the accuracy of the interpolations determines the accuracy of the GKS method. Once
the value of f is known at the cell boundary xiþ1=2, the fluxes can be easily computed. It should be emphasized
that Eq. (15) assumes no shocks, hence no discontinuities, in the flow. Otherwise, discontinuities of hydrody-
namic variables at cell interfaces should be explicitly considered in f ð0Þ, and approximation of f at cell bound-
aries must be derived from Eq. (11) with consideration of the discontinuities [4]. In the present work,
symmetric two-point interpolations are used to compute the hydrodynamic variables q, u and T at the cell
boundary xiþ1=2, i.e. the values of q, u and T at xiþ1=2 are the averages of their values at xi and xiþ1. The same
two points are also used to compute the spatial derivatives of q, u and T at xiþ1=2 [25].

For isothermal flows, the temperature T is a constant, the parameters a and A in Eq. (15) reduce to:
a ¼ r ln qþ 1

RT
carua ð17aÞ

A ¼ �n � aþ 1

RT
cc� RT Ið Þ : ru: ð17bÞ
Because a and A are given in terms of the primitive variables ðq; u; T Þ, but they must be computed in terms of
the conserved variables ðq; qu; qeÞ. This can be accomplished by directly using the Jacobian between the prim-
itive and conserved variables or by using the compatibility conditions that:
Fig. 1. Schematic for the cell centers (�) and cell interfaces (	) in the GKS.
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Z
f ðnÞ/a dn ¼ 0; n P 1; /a 2 f1; n; n2=2g; ð18Þ
where f ðnÞ for n P 1 is the nth order nonequilibrium distribution function in the Chapman–Enskog expansion
of f. Because f ð1Þ ¼ �kDtf ð0Þ for the BGK equation, therefore
Z

n � af ð0Þ/a dn ¼ �
Z

Af ð0Þ/a dn: ð19Þ
It can be shown that this compatibility condition is automatically satisfied by a and A given by Eqs. (16) for
fully compressible flows, or Eqs. (17) for isothermal flows.

With a and A at cell boundaries determined by the hydrodynamic variables ðq; u; T Þ at the cell centers fxig,
the distribution function f can be computed at cell boundaries fxi
1=2g, hence the total fluxes across the cell
interfaces in the time interval ½tn; tnþ1� can be easily computed. Then the conserved variables ðq; qu; qeÞ can
be updated according to Eq. (14). It should be noted that for isothermal near-incompressible flows studied
in the present work, the temperature is a constant thus the equation for the internal energy is eliminated in
the GKS method.

As an explicit numerical scheme, the time step Dt in the GKS is dictated by flow characteristics. For high-
Reynolds number flows in which the convection term is dominant, and the time step Dt is determined by the
Courant–Friedrichs–Lewy (CFL) condition:
Dt ¼ g
Dx

ðjujmax þ csÞ
; 0 6 g 6 1;
where g is the CFL number, Dx is the minimum cell size, jujmax is the maximum of the velocity, and cs ¼
ffiffiffiffiffiffiffi
RT
p

is
the speed of sound. For low-Reynolds number flows, the viscous term is dominant, thus the time step is deter-
mined by the following condition:
Dt 6
ðDxÞ2

2dm
:

Consequently, a unified stability condition can be obtained [40]:
Dt 6
gDx

ðjuj þ csÞð1þ 2=Re�Þ ; ð20Þ
where Re� ¼ jujDx=m is the grid Reynolds number. It has been shown that the GKS method is second-order
accurate in both space and time [41]. For isothermal flows, the speed of sound cs is a constant, and the time
step size Dt can be determined a priori with given values of Dx and g. This practice saves some computational
time in the GKS method.

2.3. The generalized lattice Boltzmann equation

The generalized lattice Boltzmann equation (GLBE) with multiple-relaxation-time (MRT) collision model
is a fully discrete model based on the linearized Boltzmann equation. The lattice Boltzmann equation can be
defined by three key ingredients. First of all, the model evolves on a discrete phase space C� :¼ fdxZd ; fcigg
with discrete time dtN0 :¼ dtf0; 1; 2; . . .g. The discrete phase space C� consists of a d-dimensional lattice space
dxZd with a lattice spacing dx and a finite symmetric discrete velocity set fciji ¼ 0; 1;Ng ¼ �fcig, where c0 ¼ 0,
so that:
xj þ cidt 2 dxZd ; 8ci 2 fcig and xj 2 dxZd :
The particle velocity space n is approximated by the discrete velocity set fcig. Second, corresponding to
fcig, there is a set of distribution functions ffig on each grid point xj. The particle transport is modeled by
moving of ffig from one grid point xj to its neighboring points xj þ fcigdt; and the inter-particle collision
is modeled by linear relaxation processes to the local Maxwellian. And third, the evolution equation of a lat-
tice Boltzmann model is written in general as the following:
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fðxj þ cdt; tnþ1Þ � fðxj; tnÞ ¼ �M�1 � S mðxj; tnÞ �mðeqÞðxj; tnÞ
� �

; ð21Þ
where tnþ1 :¼ tn þ dt, f is the ðN þ 1Þ-tuple vector of the discrete distribution functions ffiji ¼ 0; 1; . . . ;Ng:
fðxj þ cdt; tnÞ :¼ ðf0ðxj; tnÞ; f1ðxj þ c1dt; tnÞ; . . . ; fN ðxj þ cNdt; tnÞÞT;
fðxj; tnÞ :¼ ðf0ðxj; tnÞ; f1ðxj; tnÞ; . . . ; fN ðxj; tnÞÞT;
m and mðeqÞ are ðN þ 1Þ-tuple vectors of moments and their equilibria, M is an ðN þ 1Þ � ðN þ 1Þ transforma-
tion matrix, so that:
m ¼ M � f; f ¼ M�1 �m; ð22Þ
and S is a non-negative definite ðN þ 1Þ � ðN þ 1Þ diagonal matrix:
S ¼ diagðs0; s1; . . . ; sNÞ; si P 0; ð23Þ

where fsig are relaxation rates.

The matrix M is so constructed that M �MT is a diagonal matrix. That is, the column vectors feig of MT are
mutually orthogonal by construction [31,42,43,5], i.e. ei � eT

j ¼ keikdij. The construction of M is directly related
to the finite orthogonal polynomials fuiji ¼ 0; 1; . . . ;Ng on the discrete velocity set fcig. In fact, the jth com-
ponent of ei, eij, is uiðcjÞ. The orthogonal polynomials fuiji ¼ 0; 1; . . . ;Ng are analogous to the generalized
Hermite polynomials on continuous n-space, except that fuig is orthogonal on a discrete velocity set fcig,
and has a finite number of polynomials, which is equal to the number of discrete velocities. The equilibria
of moments, fmðeqÞg, are polynomials of conserved variables in the system, which are obtained through Taylor
expansion of the Maxwellian about u ¼ 0. Because M and fmðeqÞg are specifically related to the discrete veloc-
ity set fcig, we will provide a concrete example with a specific discrete velocity set fcig.

Eq. (21) presents a very simple evolutionary dynamics: its left-hand-side represents particle transport by
simple advection, which only involves data movements from one lattice node xj to its neighboring nodes
xj þ cidt and is executed in velocity space; and its right-hand-side represents collision process modeled by lin-
ear relaxation processes executed in moment space. Thus, the lattice Boltzmann algorithm consists two simple
steps: advection and collision and can be written as the following:
fiðxj þ cidt; tn þ dtÞ � fiðxj; tnÞ ¼
X

k

skeki

kekk
mkðxj; tnÞ � mðeqÞ

k ðxj; tnÞ
h i

: ð24Þ
The advantage of executing the advection and collision in the velocity space and moment space, respectively,
would become apparent later.

In the present work, we confine ourselves to isothermal low-Mach number flows in two dimensions (2D).
For this purpose, we can use the nine velocity model in 2D, i.e. the D2Q9 model. The discrete velocities are:
ci ¼
ð0; 0Þc; i ¼ 0;

ð
1; 0Þc; ð0
 1Þc; i ¼ 1–4;

ð
1;
1Þc; i ¼ 5–8;

8><
>: ð25Þ
where c :¼ dx=dt. We arrange the moments in the following order:
m :¼ ðq; e; e; jx; qx; jy ; qy ; pxx; pxyÞ
T
; ð26Þ
where m0 ¼ q is the density, m1 ¼ e is related to the total energy, m1 ¼ e is related to energy square,
ðm3;m5Þ :¼ ðjx; jyÞ :¼ qðux; uyÞ is the flow momentum, ðm4;m4Þ :¼ ðqx; qyÞ is related to the head flux, and
m7 ¼ pxx and m8 ¼ pxy are related to the diagonal and off-diagonal components of the stress tensor, respec-
tively. Because we are only interested in isothermal system, the conserved variables are the density and
momentum j :¼ qu:
q ¼
X

i

fi; qu ¼
X

i

cifi: ð27Þ
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Because the energy is not a conserved variable, such LBE models are also called a thermal ones. Accord-
ingly, the equilibrium moments are:
mðeqÞ
1 ¼ 3 u2

x þ u2
y

� �
� 2q; mðeqÞ

2 ¼ �3 u2
x þ u2

y

� �
þ q; ð28aÞ

mðeqÞ
4 ¼ �ux; mðeqÞ

6 ¼ �uy ; ð28bÞ

mðeqÞ
7 ¼ u2

x � u2
y ; mðeqÞ

8 ¼ uxuy : ð28cÞ

Note that the equilibria of the conserved moments are equal to themselves. We have made two related approx-
imations in fmðeqÞ

i g. First, because we are only interested in low-Mach number flows, the terms higher than u2

are ignored in the equilibria. And second, for the same reason, terms related to dqu are also ignored, where dq
is the density fluctuation: q :¼ q0 þ dq and q0 ¼ 1. In effect, the density is decoupled from the momentum
modes so that u ¼

P
icifi instead of Eq. (27). With the ordering of moments specified by Eq. (26), the trans-

form matrix M for the D2Q9 model is given by [42]
M ¼

eT
0

eT
1

eT
2

eT
3

eT
4

eT
5

eT
6

eT
7

eT
8

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

¼

1 1 1 1 1 1 1 1 1

�4 �1 �1 �1 �1 2 2 2 2

4 �2 �2 �2 �2 1 1 1 1

0 1 0 �1 0 1 �1 �1 1

0 �2 0 2 0 1 �1 �1 1

0 0 1 0 �1 1 1 �1 �1

0 0 �2 0 2 1 1 �1 �1

0 1 �1 1 �1 0 0 0 0
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: ð29Þ
With the equilibria given by Eqs. (28), the Navier–Stokes equations can be derived from the MRT-LBE with
an equation of state p ¼ q=3, i.e. the speed of sound is cs ¼ 1=

ffiffiffi
3
p

c, and the shear and bulk viscosities are given
by [42]
m ¼ 1

3

1

s7

� 1

2

� �
cdt ¼ 1

3

1

s8

� 1

2

� �
cdt; ð30aÞ

f ¼ 1

6

1

s1

� 1

2

� �
cdt; c :¼ dx=dt: ð30bÞ
If we set si ¼ 1=s, the GLBE (21) reduces to the lattice BGK (LBGK) model [27,28] with the equilibrium dis-
tribution function f ðeqÞ

i directly derived from the Taylor expansion of the Maxwellian [37,38]. For the LBGK
D2Q9 model, f ¼ m=2 ¼ ðs� 1=2Þ=6. Therefore, the LBGK model is particularly prone to numerical instabil-
ity due to spurious fluctuations in density and other nonconserved modes, for there is insufficient dissipation
for these fluctuations when s is closed to 1/2. In the GLBE, for those nonconserved moments which have neg-
ligible effects to hydrodynamics, the relaxation rates fsig corresponding to these moments can be optimized to
attain optimal linear stability, and this is the flexibility the LBGK equation cannot afford. In addition, the
GLBE can adjust the heat conductivity j independent of the viscosity m, thus it is not subject to the problem
of the Prandtl number Pr ¼ 1, which is inherent to the BGK model.

Now, some comments comparing the LBE and GKS are in order here. The lattice Boltzmann equation in
general is a discrete moment system aiming to approximate the incompressible Navier–Stokes equations [39].
The simplicity of the LBE leads to its computational efficiency, but also makes it difficult to accurately model
the evolution of the higher order moments beyond the hydrodynamics [44]. On the other hand, the gas-kinetic
scheme solves the full compressible Navier–Stokes equations within the kinetic framework: the fluxes are eval-
uated as moments of the distribution function f, which is an approximated solution of the BGK model equa-
tion. Depending on how f is approximated, higher order moments beyond the hydrodynamics can be
computed [24,45]. In addition, there are other differences. First, in LBE, c :¼ dx=dt ¼ 1. However, this does
not mean that the CFL number g ¼ 1. Because the LBE is always subject to the low-Mach number restriction
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Ma < 0:3 for near incompressible flows, therefore g ¼ ðkukmax=csÞðdt=dxÞ ¼ Mamax < 0:3. However, for the
low-Reynolds number flows, the LBE is stable and is not subject to the condition of Eq. (20). Second, the
LBE model has a non-zero bulk viscosity f, which is a numerical artifact due to discretization affecting atten-
uation of sound waves and can be analyzed [42,5]. While the BGK equation does not have a bulk viscosity due
to internal degrees of freedom, it is not clear if the GKS has the same effective bulk viscosity due to numerics
as in the LBE, because the analysis of acoustic attenuation has not be carried out for the GKS. It is expected
that in small scales close to grid spacing, the LBE and GKS would behave differently. We also note that in the
GKS for isothermal flows, only ðd þ 1Þ flow variables need to be stored, whiles in the LBE, there are ðN þ 1Þ
distribution functions ffig need to be stored, and ðN þ 1Þ � ðd þ 1Þ. Therefore, the GKS is more memory
efficient.

3. Flow past a square block in a channel in 2D

3.1. Flow configuration and boundary conditions

The test case used to quantitatively compare the LBE and GKS methods is the two-dimensional (2D) lam-
inar flow past a square block symmetrically placed in a channel with respect to the channel centerline, as
depicted in Fig. 2. The dimension of the block is D� D, and that of the channel is L� H , where L and H

are length and height of the channel, respectively. The block located at L1 from the entrance, and its two sides
paralleled to the channel walls. The flow configuration is defined by L ¼ 50D, H ¼ 8D, and L1 ¼ 12:5D in the
simulations. This flow has been subject to experimental [46] and numerical studies [46–48,32]. It thus can serve
as a good test case for our study.

The boundary conditions of the flow are specified as follows [32]. At the entrance, a parabolic velocity pro-
file along x-direction is enforced:
u0ðx� ¼ 0; y�Þ ¼ Umaxð1� y�Þð1þ y�Þ;
v0ðx� ¼ 0; y�Þ ¼ 0;
where Umax is the maximum velocity, and x� ¼ 2x=H and y� ¼ 2y=H . On the block surfaces and the channel
walls, no-slip boundary conditions are applied. At the outlet, the convective boundary conditions are applied
to all flow variables [32]:
otuþ U maxoxu ¼ 0; ð31Þ

where u ¼ q, qu and qv.

In the LBE, the velocity boundary conditions at the entrance and the solid walls are realized by the bounce-
back scheme [49–51]:
fiðxf ; tn þ DtÞ ¼ f ��ı ðxf ; tnÞ þ 2wiqf

ci � uðxb; tnÞ
c2

s

; ð32Þ
where xf is the fluid node next to the boundary location xb, and qf :¼ qðxf ; tnÞ. Through the bounce-back
scheme, the boundary conditions u ¼ ub :¼ uðxbÞ are attained approximately at dx=2 beyond xf

[52,53,29,30]. The superscript ‘‘*” denotes the post-collision state, i.e.,
f�ðxj; tnÞ ¼ fðxj; tnÞ þM�1 � S � ½mðxj; tnÞ �mðeqÞðxj; tnÞ�:
H/2

H

L 1 L

 y 
x

D

Fig. 2. Schematic of the flow past a square block in a 2D channel.
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At the outlet, the incoming distribution function fi is obtained according to a second-order finite-difference of
Eq. (31). Consequently, the density and velocity also obey Eq. (31) since both are the moments of fi. We note
that the specific method to realize the outflow boundary conditions has little effect on the results of interest.

In the GKS, the realization of the velocity boundary condition at the entrance is achieved by the ghost cell
method [25]:
qðx�1Þ ¼ qðx0Þ; ð33aÞ
jðx�1Þ ¼ 2jðx0Þ � jðx1Þ; j :¼ qu; ð33bÞ
where x�1 is the ghost cell, x1 is the first layer of fluid cell, and x0 the cell at the entrance. This treatment ensures
a second-order accuracy for the velocity boundary conditions. The convective outlet boundary conditions are
directly obtained from Eq. (31) by discretizing it using a finite-difference scheme with first-order accuracy in
time and second-order accuracy in space. For the solid walls of the channel and the square block, the second-
order one-side extrapolation schemes are used to obtain the density and the spatial gradients at the interface in
the determination of the surface distribution function f in the GKS.

The bounce-back boundary conditions can also be implemented in GKS:
f ðxb; n; tnÞ ¼ f ðxb;�n; tnÞ þ
2n � ub

RT b

f ð0Þðn; qb; ub; T bÞ; n � n̂ > 0;
where n � n̂ > 0, n̂ is the out-normal unit vector to the boundary; xb is a boundary node; qb, ub and T b are the
values at xb and time t ¼ tn; and the distribution function f ðxb;�n; tnÞ can be constructed according to Eq.
(15), where the macroscopic variables are determined using one-side extrapolation.

3.2. Evaluation of the hydrodynamic forces

The force on the square block exerted by the fluid can be obtained by integrating the pressure-tensor along
the block surface A,
F ¼ �
Z

oA
P � n̂ds ¼

Z
oA
½�pIþ 2qmS� � n̂ds; ð34Þ
where Sab :¼ 1
2
ðoaub þ obuaÞ and n̂ is the out-normal unit vector of the boundary oA. Note that we have as-

sumed that the flow is nearly incompressible in the second equality. In the GKS, we will employ this integra-

tion method to evaluate the hydrodynamic force on the block, where the pressure-tensor P on the block
surface is evaluated from the time-averaged momentum flux:
P ¼ 1

Dt

Z tnþDt

tn

Z
nnf ðxb; n; t0Þdndt0; xb 2 oA; ð35Þ
where the distribution function at the block surface, f ðxb; n; t0Þ, is determined by the boundary conditions pre-
viously described. Note that the no-slip boundary conditions at the solid surfaces are applied in Eq. (35).

For the LBE, the hydrodynamic force on the obstacle can also be computed according to Eq. (34). How-
ever, a more efficient alternative, i.e. the momentum-exchange method [51], can be used. In the bounce-back
picture, the momentum of a pre-collision particle moving with velocity c�ı :¼ �ci toward the solid wall will
be reversed to ci, and the net change of its momentum is
Dji ¼ cifiðxf ; tn þ DtÞ � c�ıf ��ı ðxf ; tnÞ ¼ 2cif ��ı ðxf ; tnÞ;

then the total force exerted on the solid due to this collision is approximately:
F iðxb; tn þ Dt=2Þ � Dji

Dt
; F :¼

X
i

F i:
Consequently, the total hydrodynamic force on the block can be obtained by integrating FðxbÞ over its
boundary defined by fxbg. It has shown that for the LBE method, the momentum-exchange and the
integration methods yield comparable results, but the former is more efficient computationally than the latter
[54].
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4. Numerical results

Initially, the flow velocity is that of the fully developed channel flow, i.e. uðx; yÞ ¼ uinðyÞ, and the block
appears impulsively at t0 ¼ 0. The Reynolds number of the flow is Re ¼ DU max=m. It is known that then the
Reynolds number is below the critical Reynolds number Rec � 60, the flow is steady. Beyond the critical Rey-
nolds number Rec, the flow becomes unsteady.

Two uniform meshes are used in the simulations: a coarse mesh of 501� 81, i.e. D ¼ 10, and a finer one of
1001� 161, i.e. D ¼ 20. Since both the LBE and GKS methods are compressible methods, the Mach number,
Ma ¼ U max=

ffiffiffiffiffiffiffi
RT
p

, is set to be 0.1 so that the compressible effect is negligible. Because we are interested in iso-
thermal flow, the temperature T is a constant, which is chosen to be RT ¼ 1=3 in the units of c ¼ dx=dt ¼ 1.

The relaxation parameters in the MRT-LBE are set as follows: for the conserved variables,
s0 ¼ s3 ¼ s5 ¼ 0; For the shear modes, s7 ¼ s8 are determined by Eq. (30a) according to the value of the Rey-
nolds number. Other relaxation parameters in the MRT-LBE are: s1 ¼ 1:1, s2 ¼ 1:0 and s4 ¼ s6 ¼ 1:2. The
choice of these relaxation parameters is based on two considerations: (a) separation between the hydrody-
namic and kinetic modes, and (b) numerical stability [42]. The bulk viscosity f ¼ ðs2 � 1=2Þ=6 ¼ 1=12. In
the GKS, we set the CFL number g ¼ 0:4 unless otherwise stated.

In addition to the velocity field, the drag and lift coefficients will also be measured and compared with exist-
ing results:
Fig. 3.
(b) fin
CD ¼
F x

1
2
�qU 2

maxD
; CL ¼

F y
1
2
�qU 2

maxD
; ð36Þ
where �q is the mean fluid density, F x and F y are the streamwise and normal components of the hydrodynamic
force F, respectively, which are computed by the integration method of Eq. (34) for the GKS, and by the
momentum-exchange method for the LBE.

4.1. Steady flow

Since both the LBE and GKS are explicit time-marching methods, a large number of time steps are required
to reach a steady-state. In our computations, the working criterion of steady-state is set to be
P

ikuðxi; tnÞ � uðxi; tn � 1000dtÞk2P
ikuðxi; tÞk

< 10�6: ð37Þ
The steady flow over a square block is characterized by a pair of symmetric stationary recirculating eddies
behind the block. The wake length Lr is a function of Re which can be approximated by a linear function [32]:
Lr

D
� �0:065þ 0:0554Re; for 5 < Re < 60: ð38Þ
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The Reynolds number dependence of the recirculating wake length Lr for steady flow, Ma ¼ 0:1: (a) coarse mesh of 501� 81 and
e mesh of 1001� 161.
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The wake length Lr is measured from the numerical results obtained from both the LBE and GKS methods
when a steady-state is attained.

Fig. 3 shows the Reynolds number dependence of Lr. The results obtained by both the LBE and GKS meth-
ods fit very well the linear relation of Eq. (38) between Lr and Re. The LBE results agree well with the empirical
relationship (38) with both coarse and fine meshes, while the GKS results slightly under-predicts the wake
lengths with the coarse mesh, however, the GKS results with the fine mesh agree very well with Eq. (38).

The velocity fields predicted by both the LBE and GKS methods are also studied. Figs. 4 and 5 present
various velocity profiles at Re ¼ 30:0 and 50.0, respectively, with the coarse mesh of 501� 81 ðD ¼ 10dxÞ.
In both cases, the velocity profiles obtained by the LBE and GKS are in excellent agreement. The L2-norm
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Fig. 4. Velocity profiles at Re ¼ 30:0 with the coarse mesh size of 501� 81 and Ma ¼ 0:1. (a) uðx; 0Þ; (b) uð0; yÞ; (c) vðx; 0Þ; (d) vð0; yÞ; (e)
pðx; 0Þ; (f) pð0; yÞ.
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Fig. 5. Same as Fig. 4 at Re ¼ 50:0.
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difference among the velocity fields uðxi; tnÞ obtained by the LBE and GKS with the coarse mesh is well under
1%: 0.36% and 0.42% for Re ¼ 30:0 and 50.0, respectively. While the y-component of velocity along the chan-
nel center vðx; 0Þ obtained from the LBE is zero within the machine accuracy, we note that vðx; y ¼ 0Þ obtained
by the GKS exhibits some oscillations of small amplitudes ð� 10�8Þ, which should be zero since the flow is
symmetric about y ¼ 0. The oscillation may be due to the different interpolations used for the cells inside
the flow domain and those at the solid boundaries. The velocity profiles on the fine mesh are indistinguishable
from those on the coarse one for uðx; 0Þ, uð0; yÞ, and vð0; yÞ; although for vðx; 0Þ, some small oscillations are
still observed for the GKS results (not shown). This indicates that with the coarse mesh the results are already
grid-size independent for Re ¼ 30:0 and 50.0.
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To demonstrate the convergence behavior for the steady-state calculations, we compute the L2-norm error
of the velocity field:
Fig. 7.
501�

Fi
E2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ikuðxiÞ � u�ðxiÞk2P

iku�ðxiÞk2

s
; ð39Þ
where the reference solution u� is the one obtained with Richardson extrapolation. The results shown in Fig. 6
clearly indicates that both the GKS and LBE methods are second-order accurate in space. The least-square
fitted slopes from E2ðuÞ and E2ðvÞ are 2.1569 and 1.9996, respectively, for the LBE, and 1.9975 and 2.0090,
respectively, for the GKS.

In the steady flow regime, the lift force is zero due to the flow symmetry. The drag force, however, varies
depending on Re. A comparison of the drag coefficient obtained by the LBE and GKS methods is shown in
Fig. 7, together with the results obtained by the finite-volume (FV) method [32], which used a 560� 340 non-
uniform mesh. We observe that both the LBE and GKS results agree well with the FV data on both the coarse
and fine meshes.

Fig. 8 shows the convergence of the drag coefficient CD and the wake length Lr at Re ¼ 30:0 and Ma ¼ 0:1.
The size of the block D varies from 6dx to 18dx, i.e. the mesh size L� H varies from 301� 49 to 901� 145.
Clearly, both CD and Lr obtained by the LBE and Lr obtained by the GKS show a second-order accuracy. The
drag coefficient CD obtained from the GKS has some interesting nonlinear behavior: for coarse meshes, the
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The Reynolds number dependence of the drag coefficient CD with Ma ¼ 0:1 and two difference mesh sizes: (a) coarse mesh of
81 and (b) fine mesh of 1001� 161. The finite-volume method (FVM) results are taken from Ref. [32].
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error of CD increases as the mesh refines. The error of CD eventually reaches to a slope about �2 with finer
meshes. This behavior is due to the nonlinear nature of the error in the GKS [55].

Fig. 9 shows the Mach number dependence of CD and Lr at Re ¼ 30:0. For Ma between 0.05 and 0.3, the
LBE results have much weaker dependence on Ma than the GKS ones. For both CD and Lr, the LBE results
vary only about 1.0%, while the GKS results vary about 5.0%. This is expected because the compressibility is
reduced in the LBE approximation [56], while it is fully retained in the GKS.

Although the LBE and GKS methods have similar capability in the prediction of the fluid behavior, they
are considerably different in terms of the computational efficiency. On the coarse mesh, the averaged CPU
times the LBE and GKS methods are 1:7� 10�2 and 5:4� 10�2 seconds per unit time, respectively, and on
the fine mesh, the times are 7:0� 10�2 and 23:0� 10�2 s, respectively. Thus, the LBE is about three times fas-
ter than the GKS on each node per iteration. In addition, the number of time steps to reach a steady-state is
different in the two methods. The LBE method takes less time steps to reach the steady-state criterion of Eq.
(37) in this case. In Table 1, the CPU times required to reach a steady-state with the criterion of Eq. (37) are
give for a number of different Re values on the two meshes. As shown, the LBE is about one order of mag-
nitude faster than the GKS for steady-state calculations.
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Fig. 8. L2-norm error of (a) CD and (b) Lr at Re ¼ 30:0 and Ma ¼ 0:1. The slop of the dash lines is �2.
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Table 1
CPU time to attain the steady-state using the LBE and GKS methods

Re

10 20 30 40 50 55

Coarse mesh (s) LBE 259.8 307.6 383.8 444.6 486.0 512.4
GKS 1676.0 2540.0 3709.0 4022.0 5070.0 5787.0

Fine mesh (s) LBE 2188 2462 2799 2892 3724 3786
GKS 10,678 20,560 30,694 33,554 40,618 44,511
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Fig. 10. Similar to Fig. 4. Velocity profiles at Re ¼ 100 with a mesh size of 501� 81 (coarse mesh): (a) uðx; 0Þ; (b) uð0; yÞ; (c) vðx; 0Þ; (d)
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While the LBE and GKS methods presented in this work are explicit time matching schemes, we would like
to point out that various numerical techniques can be applied in the future to accelerate the convergence pro-
cess for both the LBE and GKS methods. These techniques include multigrid method [57–59], pre-condition-
ing [60], LU-SGS methods [61], and other implicit time-stepping techniques.

4.2. Unsteady flows

As the Reynolds number increases to the range of 60 < Re 6 300, the recirculating wake behind the block
will become unstable, and the two alternating vortices will shed from the square block. As a result, the flow
becomes unsteady and will finally settle to a periodic pattern. The characteristics of this periodic flow can be
measured by the mean and variation of the drag coefficient, CD and DCD ¼ ðCmax

D � Cmin
D Þ, the variation of the

lift coefficient DCL ¼ ðCmax
L � Cmin

L Þ, and the Strouhal number St ¼ fsD=Umax, where fs is the vortex shedding
frequency.

We first compare the velocity profiles predicted by the LBE and GKS for Re ¼ 100 on the coarse mesh.
Similar to Fig. 4, Fig. 10 shows various instantaneous velocity profiles with the coarse mesh ð501� 81Þ at
the time when the lift coefficient just crosses 0 from the bellow. Overall the LBE and GKS results are in agree-
ment with each other: The L2-norm difference of the velocity fields obtained by the LBE and GKS with the
coarse mesh is about 9.3%. However, small discrepancies observed in the velocity profiles along the channel
center (Fig. 10a and c) indicates that the oscillating frequency of the GKS result is lower than that of the LBE.
This discrepancy in the oscillating frequency is reduced with the fine mesh of 1001� 161. The L2-norm
difference of the velocity fields reduces to about 3.1% with the fine mesh. This indicates that the numerical
dissipation in the LBE and GKS methods is rather different, and the difference diminishes as the grid refines.
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Fig. 11. The Reynolds number dependence of (a) the mean drag coefficient CD, (b) the variation of the drag coefficient DCD, (c) the
variation of the lift coefficient DCL, and (d) the Strouhal number St, with a coarse mesh of 501� 81. The results obtained a finite-volume
(FV) method is from Ref. [32].
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To further resolve the discrepancy between the LBE and GKS results, we compare both LBE and GKS
with well established finite-volume (FV) data [32]. The FV simulations use a nonuniform mesh of
560� 340, with 100 control volumes (CV) around the block, and the chord length of the smallest CV is
0.01D. Fig. 11 compares the LBE and GKS results of CD, DCD, DCL, and St obtained with the coarse mesh
(501� 81) to the FV results for 60 6 Re 6 300. For CD shown in Fig. 11a, the LBE and GKS results agree
well with each other, but both of them differ considerably from the FV data when Re > 100. Both the LBE
and GKS results predict a minimum of CD at Re � 150, consistent with the FV result. The variation of the
drag coefficient, DCD, is shown in Fig. 11b The LBE and GKS results agree reasonably well with the FV data
up to Re � 150, and the LBE results are closer to the FV ones when Re 6 200. Similar observations can be
made for DCL, as shown in Fig. 11c. Furthermore, the FV results indicate that DCL is a nonlinear function
of Re when Re > 150, but nonlinearity in either the LBE or GKS results, if any, is rather weak. We also note
that the LBE results of CD, DCD and DCL are consistently larger than that of the GKS.

Fig. 11d shows the Strouhal number St as a function of the Reynolds number. The value of St is measured
from the time history of the lift coefficient CL. Both the LBE and GKS results agree reasonably well with the
FV results when Re 6 100. The LBE results fail to predict the local maximum of St at Re � 150, while the
GKS results over-predict the maximum at Re � 200. Also, St obtained by the LBE is always slightly larger
than that obtained by the GKS method.

The results of Fig. 11 indicates that, with a coarse mesh of 501� 81, both the LBE and GKS can yield
quantitative results up to Re � 100 reasonably well. When Re > 200, both the LBE and GKS methods with
the coarse mesh of 501� 81 cannot capture flow behavior quantitatively. We note that, with a uniform mesh
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Fig. 12. Same as Fig. 11, but on the fine mesh of 1001� 161.
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of 501� 81, the block is discretized with only 10 cells of a grid size 0.1D. This is 10 times coarser that the mesh
used in the FV simulations [32]. To resolve the discrepancies between the LBE and GKS results and the FV
results, we use a finer mesh of 1001� 161 to repeat the calculations, and the results are shown in Fig. 12.

Compared to Fig. 11, the results of Fig. 12 shows considerable improvement with the fine mesh of
1001� 161, although this finer mesh is still five times coarser around the square block than the one used in
the FV simulations [32]. Quantitatively, the LBE and GKS results agree with the FV results much better than
the coarser mesh results. The values of CD, DCD, DCL and St are in better agreement with the FV data for both
LBE and GKS methods up to Re ¼ 300, as shown in Fig. 12. Specifically, the nonlinearity of DCL is clearly
seen in both the LBE and GKS results. In addition, both the LBE and GKS results predict a local maximum in
St, consistent with the FV prediction. We note that, with the finer mesh of 1001� 161, the LBE results seem to
agree slightly better with the FV results in the lower range of Re (Re 6 100), while the GKS results seem to be
slightly better in the higher range of Re (Re P 250).

Fig. 13 shows the convergence of the Strouhal number St and the normalized pressure �p ¼ ðp � p0Þ=p0 at
Re ¼ 100:0 and Ma ¼ 0:1, where p0 is pressure at the center of the inlet. Clearly, the results demonstrate that
both the LBE and GKS are second-order accurate in space for the unsteady case. While the GKS is second-
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Fig. 14. Mach number dependence of the Strouhal number St, with mesh size 1001� 161. The Reynolds number Re ¼ 100:0.
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Fig. 13. L2-norm error of (a) the Strouhal number St and (b) the normalized pressure �p ¼ ðp � p0Þ=p0 at the Mach number Ma ¼ 0:1 and
the Reynolds number Re ¼ 100:0, where p0 is pressure at the center of the inlet. The slop of the dashed lines is �2.
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order accurate in time [41] and the LBE method has been shown to be only first-order accurate in time asymp-
totically [39], the results of Fig. 13 clearly indicates that both the LBE and GKS are second-order accurate in
time as well, because both grid size and time step have to be refined simultaneously in the simulation. Fig. 14
shows the Mach number dependence of St at Re ¼ 100:0. Similar to the steady-state case shown in Fig. 9 for
CD and Lr, St depends on Ma nonlinearly. The variations in St is about 1.0% for both the LBE and GKS
methods when 0:05 6 Ma 6 0:3.

Finally, we investigate the robustness of both methods. With the coarse mesh of 501� 81 ðD ¼ 10dxÞ, the
LBE code is stable up to Re � 7000, while the GKS code with the CFL number g ¼ 0:4 is stable up to
Re � 100; 000. The robustness of the GKS method may be in part attributed to the interpolations used in
the method and the upwinding nature of the method [55]. This suggests that the GKS has a numerical dissi-
pation which is absent in the LBE method. Thus, the robustness and stability for under-resolved cases are
expected [55].

5. Conclusions

In this paper, we conduct a quantitative comparison between two kinetic methods for CFD, i.e. the lattice
Boltzmann equation (LBE) and the gas-kinetic scheme (GKS). The comparative study is carried out by sim-
ulating the test case of incompressible flow past a square block symmetrically placed in a channel in two
dimensions. We investigate the numerical accuracy, computational efficiency and robustness of both methods.
Our findings are summarized as follows.

While the spatial discretizations of the LBE and GKS methods are rather different, the former is a finite
difference scheme and the latter is a finite-volume one, both methods have the same second-order accuracy
in space. Thus, as far as the convergence in space is concerned, they are not expected to behave significantly
different from each other for low-Mach number flow calculations for which they are both valid. The LBE and
GKS methods yield comparable results as expected, and when sufficient grid resolution is provided, both the
LBE and GKS results agree well with existing well-resolved results obtained by other well-established meth-
ods. Although it has been shown that the GKS is second-order accurate in time [41] while the LBE is only first-
order accurate in time asymptotically [39], we observe that both the LBE and GKS are second-order accurate
in time for the unsteady flow calculations.

It should be stressed that the LBE and GKS methods are designed for different flow regions: the former is
strictly for near incompressible flows with low-Mach number restriction Ma < 0:3, while the latter is designed
for fully compressible flows, even though both of them are originated from the linearized Boltzmann equation.
The drastic approximations made in deriving the LBE [37,38] make the LBE a very efficient algorithm. While
both the LBE and GKS methods are explicit time-matching schemes, the LBE calculation is much simpler and
involves less floating point operations (FLOPs) on each node per time step than the GKS method. Conse-
quently, the LBE is about three times faster node-wise per time step than the GKS method. As a results,
the LBE is about one order of magnitude faster for 2D steady-state calculations. We should also point out
that, while the GKS is not limited to the low Mach number restriction and capable to simulate fully compress-
ible flows, it is not straightforward to extend the LBE for fully compressible flows. There have been various
attempts to extend the LBE for compressible flows [62,63], however, they invariably make the LBE much more
complicated and yet may not be effective or efficient.

We also note that numerically the GKS method is far more robust than the LBE method in general. With
the same grid resolution, the GKS method can reach a Reynold number at least one order of magnitude larger
than that the LBE method can, even though the grid resolution is absolutely inadequate to resolve the flow at
that high-Reynolds number. This can be attributed to the interpolations used in the GKS method and the
upwinding nature of the method, and it is known that interpolations can introduce severe numerical viscosity
in small scales [5]. Thus, these two methods should behave differently in small scales close to grid spacing,
because of the differences of their numerics.

In conclusion, we found both the LBE and GKS methods are reliable second-order schemes for low-Mach
number flows, and the LBE is about 10 and 3 times faster than the GKS for steady and unsteady flow calcu-
lations, respectively, while the GKS uses less memory. We also notice that the GKS method is more robust
and stable in under-resolved cases due to its numerical viscosity, which is absent in the LBE method.
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